
Icon
actionneur en ligne

Spécifications préliminaires
 pour actionneurs Icon Modbus RTU

 Modbus RTU | icon | Novembre 2022

 ic
o

n

The RS485 MODBUS RTU option is a serial communication interface between the actuators and
a control system. The MODBUS interface can directly communicate with a PLC with a MODBUS
module or a PC through an external USB to RS485 interface box.
This document describes how to install, configure and use an actuator with embedded MODBUS
RTU serial communication.
Basic serial bus communication knowledge is a prerequisite for using and understanding the
below documentation.

Concept Modbus RTU System

Universally recognized and widely used, the MODBUS RTU fieldbus is still an essential, open
communications standard, supported by a large number of products on the market today.
In the MODBUS network any MODBUS Master can be connected to one or several Concens icon
Actuators with MODBUS interface. The topology is a serial bus-system with actuators
including derivation cable connected to a trunk cable through passive TAPs. One master PLC or
PC can be connected to the serial bus to control and supervise the actuator slaves. The actuators
might potentially be mixed with other 3rd party MODBUS slaves.

At the physical protocol level, the RS-485 (TIA/EIA-485) two-wire interface is used, which
supports half-duplex communication between the master and one or more slaves. Inter-
communication between slaves is not possible and a slave will never transmit data without
receiving a request from the master. The master (incl. terminator) can be connected at the end
of the cable as shown in the figure above.
Alternatively, connection of the master anywhere in-between two of the slaves is acceptable as
well.

Installation Modbus RTU

1

 Modbus RTU | icon | November 2022

Safety instructions

Be aware of the following symbols throughout the installation guide:

Recommendations

Failing to follow these instructions can result in the actuator suffering damage or being
ruined.

Additional information

Usage tips or additional information that is important in connection with the use of the
actuator.

Be aware that a lot of test and quality activities have been performed to ensure the

functionality and safe use of the product. As with other electronic equipment the MODBUS
option has a finite failure rate. To ensure that one failure does not lead to an unsafe state
the microcontroller monitors critical components (1. failure surveillance). It is still possible
to run the actuator but it is of utmost importance that the user reacts upon these events to
maintain 1. failure safety (i.e. polling of relevant MODBUS registers to identify the reason
for last stop)

ic
o
n

Installation Modbus RTU

2

 Modbus RTU | icon | November 2022

Connection, cables, and plugs

The actuator data and power cables are integrated and pre-mounted on the Concens icon
Actuators.

ic

o
n

Installation Modbus RTU

3

 Modbus RTU | icon | November 2022

Modbus RTU Functional Description

The Concens MODBUS protocol is implemented conforming to the “basic slave” implementation
class. The following options have been implemented:

Parameter Options Default value Remarks

Adressing Configurable from 1
to 246

8 (= un-assigned) Configured by
CAS software

 -

Baud rate - 115.2 kBaud

Parity - None

Stop Bits - 1

Mode RTU -

Electrical Interface RS485 2W-cabling -

Connector Type Yes Molex 8 pol Mini Fit JR

ic

o
n

Installation Modbus RTU

4

 Modbus RTU | icon | November 2022

Unicast/broadcast

MODBUS is a single master system, which means that only one master can be
connected at any single point in time. Two modes of communication are possible,
Unicast and Broadcast.

Request/response (unicast)
The requests from the master are addressed to a given slave. The master then waits for
the response from the slave which has been interrogated. In this mode the transaction
consists of 2 messages: a request from the master and a response from the slave.

Broadcasting
No Broadcasting is possible.

Response time

The slave device will respond on each valid MODBUS request from the master within a

time which is dependent on the setting of parameter ‘MODBUS Response Delay’ (Input

Register XXXX). With a default parameter value (3 ms) the max. response time is 18 ms

(3 + 15 ms) – when increasing the parameter value worst case is 115 ms (100 + 15 ms).

Modbus message timing:

The MODBUS response timeout setting of the master should be set to a value

larger than the calculated max. response time.

ic

o
n

Installation Modbus RTU

5

 Modbus RTU | icon | November 2022

Error checking

MODBUS RTU networks employ two methods of error checking:
1. Parity checking of each data character (no parity)
2. Frame checking within the message frame (Cyclical Redundancy Check)

Parity checking
A Concens MODBUS device can only be configured for no parity checking. This
determines how the parity bit of the character’s data frame is set.

Frame checking
RTU Mode message frames include an error checking method that is based on a Cyclical
Redundancy Check (CRC). The error-checking field of a message frame contains a 16-bit
value (two 8-bit bytes) that contains the result of a Cyclical Redundancy Check (CRC)
calculation performed on the message contents.

Message format

Any MODBUS message consists of the basic fields shown below: Slave address (Addr),

Function code (Function), up to 252 data bytes (Data) and a calculated 16 bit checksum

(CRC).

Messages start with a silent interval of at least 3.5 character times – at the actual

communication baud rate. The first field transmitted is the device address. Following

the last transmitted byte, a similar interval of at least 3.5 character times marks the end

of the message. A new message can begin after this interval.

Address field

The address field Addr is one byte long. Valid slave addresses are 1 – 246. Value 0 and

value 200 to 255 is reserved for special purposes. A master addresses a slave by placing

the slave address in the Addr field of the message. When the slave responds it places its

own address in the Addr field to let the master know which slave is responding.

Each slave device must have assigned a unique address (from 199) so that it can

be addressed independently from other nodes.

Function field

The function field Function is one byte. Supported MODBUS functions are 3, 16. When a

message is sent from the master to a slave, the function field code tells the slave what

kind of action to perform.

ic
o

n

Installation Modbus RTU

6

 Modbus RTU | icon | November 2022

When the slave responds to the master, it uses the function field to signal either a

normal, error-free response or an exception response. For a normal response the slave

simply echoes the original function code. For an exception response the slave returns a

code that is equivalent to the original function code with the most significant bit set. In

addition, the slave adds a unique code into the data field of the message telling the

master what kind of error occurred.

Data field

The data field is of varying length. The data field of the message sent from the master to

the slave contains additional information which the slave must use to take the action

requested by the function field. This can include items like register addresses, quantity

of register to handle, and the count of actual data bytes in the message.

CRC field

The CRC field is 2 bytes long. The CRC value is calculated by the transmitting device,

which appends it to the end of the message. The receiving device recalculates a CRC

during receipt or the message and compares the calculated value to the actual value

received in the CRC field. In the case of a difference an exception response is returned.

Register-parameter mapping

All data addresses in MODBUS messages to Concens actuators are referenced to zero.

The input register known as e.g. ‘Input Register 1XXX’ in a programmable controller is

addressed as register 1XXX in the Addr field of a MODBUS message. The function code

of the message already specifies an ‘Input Register’ operation and therefore the ‘xxxx’

reference is implicit. Page XX of XX In the same way the holding register known as e.g.

‘Holding register 1XXX’ is addressed as register 1XXX in the Addr field of the message,

together with a relevant Holding Register function code.

All MODBUS registers are default mapped to a specific actuator parameter.

Data formats

Application information communicated between MODBUS master and slave is

organized as one or more 16-bit Registers. Different datatypes are mapped into theses

addressable registers. The type of any parameter value embedded into the MODBUS

message has to be recognized according to the register/parameter tables in Appendix A.

Concens MODBUS devices support the following datatypes (illustrated by single register

write-message examples):

Short integer register (U8)

 Status bytes and small integer values are stored in MODBUS registers where only half

of the register is utilised. Integer values from 0 to 255 are stored in the least significant

byte of the register.

ic

o
n

Installation Modbus RTU

7

 Modbus RTU | icon | November 2022

Unsigned integer register (U16)

Integer values from 0 to 65,535 are stored in the normal 2-byte MODBUS register. The

most significant byte of the value is sent first.

Signed integer register (S16)

Integer values from -32,768 to 32,767 are stored in the normal 2-byte MODBUS

register. The most significant byte of the value is sent first.

Long integer registers (U32)

Some integer values used by the actuator are larger than 65,535, which is the largest

number that can be stored in a single MODBUS register. In these cases, the unsigned

value is stored in two consecutive integer registers enabling values up to 4,294,967,295.

These “long integer” registers are potentially accessed using the MODBUS functions 3,

4, and 16 (see below). The most significant word is stored in the lower register (sent

first), and the least significant word is stored in the higher register.

Function codes

The Concens actuator supports a subset of the standard MODBUS RTU function codes

to provide access to the internal actuator parameters and functions.

The Concens MODBUS protocol does not support the Diagnostic function (function code

08). As a more general approach, the MODBUS master – and the service tool – can read

a large amount of service counter input registers.

ic

o
n

Installation Modbus RTU

8

 Modbus RTU | icon | November 2022

Function code 3 – Read Holding Registers

Function code 3 is used to read one or more holding registers in the actuator,

referenced in Appendix A. When the master accesses a register that is not supported by

the slave it responds with an exception message. The register address in this context is

without ‘xxxx’ identification. E.g. the ‘Target Position’ holding register is read via

register address XXXX – in the PLC often referenced as XXXX. Broadcast is not

supported. Request message:

In the response message the requested values are delivered to the master. The data

bytes are organized according to data type as explained above.

Response message:

Function code 16 – Write Multiple Holding Registers

Function code 16 is used to write one or more holding registers in the actuator,

referenced in Appendix A. When the master accesses a register that is not supported by

the slave it responds with an exception message.

The register address in this context is without ‘xxxx’ identification, e.g. meaning address

0 equals register xxxx.

Multiple registers are written as an entity with commands executed as the final stage.

That means, if e.g. Holding Register xxx1, xxx2 and xxx3 (Target Position, Command-

Remote and Max Speed) are written in one single command then the actuator will start

running towards the new position with the new speed.

Broadcast is not supported.

Request message:

The normal response message returns the slave address, function code, starting address

and the quantity of registers written.

ic

o
n

Installation Modbus RTU

9

 Modbus RTU | icon | November 2022

Response message:

Exceptions

When a MODBUS master transmits a request to a slave the expected behaviour is that

the slave responds with a normal response. But several error scenarios are possible:

• The slave does not receive the request due to a communication error. No response is

returned; the master will process a time-out and eventually repeat the request.

• The slave receives the request but detects a parity or CRC communication error. No

response is returned; the master will process a time-out and eventually repeat the

request.

ic

o
n

Installation Modbus RTU

10

 Modbus RTU | icon | November 2022

Parallel position control

Definition of devices on the MODBUS in parallel setup
• • Master, the one on the MODBUS who initiates a parallel positioning
(e.g. CAS).

• • Primary actuator, the one who controls the other actuators

• • Slave actuators, the ones who is following the primary actuator

A parallel positioning can both be initiated from the MODBUS via e.g., CAS or by the
analogue interface on the primary actuator.
Following is required to run in parallel mode with the actuators.

1. Up to 8 actuators can run in parallel

2. They all have to be on the same MODBUS

3. No other actuators are allowed to join the MODBUS, i.e. all the actuators (max 8) on
the physical MODBUS has to join the parallel positioning

4. One actuator is pointed out to be the primary, i.e. the one with MODBUS address 200

5. Up to 7 slaves can be configured to follow the primary actuator. The slaves must have
an address from 201-207

6. When a parallel run is activated via the analogue interface on the primary actuator
(i.e. the DIR buttons or analog input value changes) we call it “local initiated
positioning” from now, the MODBUS master (e.g. CAS) MUST also leave the bus. I.e.
“Concens Actuator Studio” is not allowed to “poll” anything.

In parallel position control where more than one actuator has to follows, the position
control de-scribed in section 3.2 is used. To detect if an actuator is blocked or has
problems following the position profile the status signal Err-slip is used.
I.e. each actuator has it owns closed position loop and if it does not follow the position
profile (if the Err-slip is activated) the actuator will report an error (when polled by the
primary actuator) and all actuator are requested to stopped by the primary actuator.
When a parallel local initiated positioning is activated on the primary actuator, it is

expected the MODBUS master is quite again on the bus. I.e. before the local initiated

positioning is activated the MODBUS master has been stopped sending requests (polling

etc.) on the bus.

ic

o
n

Installation Modbus RTU

11

 Modbus RTU | icon | November 2022

The sequence diagram below illustrates how a parallel local initiated positioning works.

Figure Parallel run initiated by local key press

The same protocol is used as for the MODBUS master-initiated case, but here the
MODBUS master MUST be the “heartbeat” creator, by polling the primary actuator.
Below the sequence diagram illustrates what happens when the direction button on the

primary actuator is released before the position is reached.

Figure Parallel stop initiated by local key release

ic

o
n

Installation Modbus RTU

12

 Modbus RTU | icon | November 2022

If an actuator had problem following the velocity ramp, it will report an “Slip” error to
the primary actuator when he polls for the status. The primary actuator will request all
actuators on the bus to stop.
See the sequence diagram example below

Figure Parallel run where an error occurs

ic

o
n

Installation Modbus RTU

13

 Modbus RTU | icon | November 2022

Below is a sequence diagram of how the MODBUS master initiates the parallel run.

Figure Parallel run initiated by MODBUS Master

The MODBUS master MUST poll the primary actuator for status every 500ms to

generate a “Hear-beat” event, which the primary actuator uses to poll all the slaves and

return one single status response to the master. I.e. if the MODBUS master stops

polling/generating the heartbeat all actuators will stop within 1s.

This also means that a 1s. delay before other actuators will react on a fault on

another actuator. The delay will result in a mechanical misalignment if a fault occurs.

ic

o
n

Installation Modbus RTU

14

 Modbus RTU | icon | November 2022

Below is an example of the MODBUS master which requests a parallel stop.

ic

o
n

Installation Modbus RTU

15

 Modbus RTU | icon | November 2022

Modbus General

Only unicast messages generate a response from the device in question, Broadcast

messages does not!

All the registers are read- and writable, but some of the register ignore write request

(identity, run status etc.).

All the registers are unsigned 16-bit (uint16_t), together (xx + xx_HIGH) 32-bit registers

are supported:

uint16_t u16 = reg[n];

int16_t i16 = (int16_t)reg[n];

uint32_t u32 = *(uint32_t*)®[n]; // and reg[n+1]

int32_t i32 = *(int32_t*)®[n]; // and reg[n+1]

When more registers are written in one go (function 16), and if one or more exceptions

occurs, only the last execution status is responded back

(MB_EX_ILLEGAL_DATA_ADDRESS, MB_EX_SLAVE_BUSY, or

MB_EX_SLAVE_DEVICE_FAILURE).

 Reading “write only” (WO) register return 0, no exception is raised! Writing “read only”

(RO) register is just ignored; no exception is raised!

All registers are resat when the Broadcast messages “Reset configuration”. There values

are zero (0) unless another default value are mentioned in the following register lists.

ic

o
n

Installation Modbus RTU

16

 Modbus RTU | icon | November 2022

Modbus Registers

These unicast registers are intended used during the

• end-customers normal operation

• service setup

ic

o
n

Installation Modbus RTU

17

 Modbus RTU | icon | November 2022

ic

o
n

Installation Modbus RTU

18

 Modbus RTU | icon | November 2022

ic

o
n

Installation Modbus RTU

19

 Modbus RTU | icon | November 2022

ic

o
n

Installation Modbus RTU

20

 Modbus RTU | icon | November 2022

ic

o
n

Typical Use Cases

Typical Use Cases In this section further descriptions of how to communicate with the

Concens icon Actuators are shown. The examples are typical user scenarios and

application solutions. All examples include references to registers, which are described

in details. Configuration Before integration into a MODBUS system a few parameters of

the actuator have to be checked and eventually changed. This preparation is done by

use of the CAS PC too and guarantees that the actuator can execute basic functionality.

Further fine-tuning may be required to fulfil system-or application requirements.

Run to target:

Before you move the actuator to any new position you must verify that some general

prerequisites are fulfilled. Timing (e.g., when the actuator is still moving), environment

conditions and errors might mean that the actuator is in a state where further

operation is not possible.

1. Write with function code 16 to register 1020 the new position.

2. Write with function code 16 to register 1023 the value 2 for running to target.

3. Read with function code 3 register 1010 for evaluating stop condition.

Run to predefined positions:

 It is possible to pre-define up to 4 different actuator positions and then have the

actuator switch between these positions by simply sending one command.

1. Write with function code 16 to register 1012,1014,1016,1018, the pre-different

positions.

2. Write with function code 16 to register 1023 the value 3,4,5 or 6 for running to

pre-different position.

3. Read with function code 3 register 1010 for evaluating stop condition.

Installation Modbus RTU

21

NOTRE GAMME DE PRODUITS

SNT développe son savoir-faire dans tous les domaines
des systèmes de motorisation et d’asservissement.

ZI de la Croix Saint Nicolas - 2, rue Marcel Dassault
94510 La Queue en Brie

Tel: 01 45 93 05 25 - Fax: 01 45 94 79 95
E-mail: contact@snt.tm.fr

www.snt.tm.fr

MOUVEMENTS LINÉAIRES

• Actionneurs linéaires
• Vérins mécaniques

• Unités linéaires
• Vis à billes

MOUVEMENTS ROTATIFS

• Réducteurs et motoréducteurs
• Renvois d'angle

• Variateurs mécaniques
• Moteurs électriques

LIAISONS INTERMÉDIAIRES

• Accouplements de précision
• Limiteurs de couple

• Barres de liaison

CONTRÔLE DU MOUVEMENT

• Servo-moteurs brushless et variateurs
• Commandes d'axes

• Variateurs de fréquence
• Pupitres opérateurs

• Variateurs pour moteurs CC

